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Abstract

Damage detection by the wavelet transform of the fundamental vibration mode receives much attention recently.

Many investigations report successful applications of the wavelet transform in damage detection, but most of them

appear to lack theoretical justifications. The objective of this contribution is to show the effectiveness of the wavelet

transform by means of its capability to estimate the Lipschitz exponent. It is also addressed that the magnitude of

the Lipschitz exponent can be used as a useful indicator of the damage extent. As a specific example, damaged beams

are investigated both numerically and experimentally. The continuous wavelet transform (CWT) by a Mexican hat

wavelet having two vanishing moments is utilized for the estimation of the Lipschitz exponent. The analysis by the

CWT also gives a guideline to choose appropriate discrete wavelet transforms. � 2002 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Because of practical importance, damage detection has been a subject of intensive investigations. The
goal of damage detection is to identify the existence of any flaw and to assess its location and severity.
Recently, there has been a growing interest to use modal parameters such as natural frequencies and mode
shapes. The advantage of using modal parameters lies in that modal testing is relatively easy. On the other
hand, it is not easy to extract local information such as small flaws from modal parameters as they can
characterize the global behavior of a structural system quite satisfactorily. Therefore, an accurate, yet ef-
ficient diagnostic technique based on modal parameters is very important.
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Most of reported modal parameter-based damage detection methods try to find the correlations between
damage and modal parameters. Yuen (1985) proposed a method to utilize eigenfrequencies and eigenmodes
by using a finite element model of a cantilever beam. Pandey et al. (1991) attempted to use curvature in-
formation by taking the finite difference of displacement mode shapes. By extending the curvature method,
Maia et al. (1997) proposed to use the frequency response functions of curvature derived from the fre-
quency response functions of displacement. Pandey and Biswas (1994) also suggested a method to employ
an experimentally determined flexibility matrix for damage detection.

Ratcliffe (1997) has recently proposed a method that does not require the mode shape information of an
undamaged beam. The idea in Ratcliffe (1997) was to take the Laplacian of the mode shape of a damaged
beam. This method is similar to the curvature-based method in that it takes numerical differentiation of
measure data, but shown to be more effective in finding small defects in a beam. However, the evaluation of
the Laplacian requiring numerical derivatives is prone to significant errors especially when the measured
data are noisy.

Another important class of damage detection methods is based on the wavelet transform. The wavelet
transform method in damage detection becomes popular because the wavelet transform has localization
characteristics and does not require the numerical differentiation of the measure data. Wavelet-based
methods have received more attention in dealing with high-frequency wave signals (see, e.g., Jeong and
Jang, 2000; Kim and Kim, 2001), but there are also some important applications of wavelets to modal data
such as mode shapes.

Liew and Wang (1998) applied the wavelet expansions on the mode shapes obtained analytically for a
cracked beam. Deng and Wang (1998) and Wang and Deng (1999) addressed the feasibility of the discrete
wavelet transform method for damage detection. Though these works presented quite satisfactory results
for damage location identification, no discussion on how to estimate damage extent was provided. No
experimental verification was provided in these works, either. Recently, Kim et al. (2000) reported both
numerical and experimental results obtained from the application of the discrete wavelet transform on the
first fundamental mode shape of a damaged beam. In Kim et al. (2000), the singularity aspect of a damaged
beam was investigated, but no thorough theoretical investigation was carried out.

In this work, we present a new method to estimate the damage location and extent in a beam using the
fundamental mode shapes. The fundamental mode shape is chosen since it is, in general, most accurately
determined by a standard modal testing method. In the present method, the mode shape is wavelet
transformed for damage diagnostics, and beam damage is investigated in terms of the Lipschitz expo-
nent––the exponent representing the order of the singularity.

For theoretical investigation, we take the continuous wavelet transform (CWT) of the fundamental
mode shape using the Mexican hat wavelet. The basis to choose the Mexican hat wavelet is twofolded: it
has two vanishing moments necessary for beam damage investigation, and it also makes the asymptotic
analysis of a singularity more effective near small values of the scale parameter. For singularity charac-
terization, the notion of the Lipschitz exponent is utilized, which can be estimated by examining the
modulus maximum of the CWT near a singularity.

We illustrate that the modulus maximum accurately determines the damaged location. This discussion is
followed by several numerical investigations to link the magnitude of the Lipschitz exponent and the extent
of a defect. These numerical findings are confirmed by the actual application of the CWT to the experi-
mental fundamental mode shape of a damaged beam. No mode shape from an undamaged beam may be
necessary in the application of the wavelet-based method.

For experimental data that may not be suitable to apply the CWT, discrete wavelet transforms can be
also applied. In the application of the discrete wavelet transform, we emphasize the role of vanishing
moments in conjunction with the Lipschitz exponent of the mode shape of a damaged beam. The present
wavelet application founded by theoretical justification is expected to broaden the applications of wavelets
in a wider class of engineering diagnostics.
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2. Continuous wavelet transform and the Lipschitz exponent

The CWT is a very useful time–frequency analysis tool with which local features of a signal, such as
singularities, can be effectively analyzed. For square-integrable signals f ðxÞ, the CWT Wf is defined as
(Daubechies, 1992; Mallat, 1998)

Wf ðu; sÞ ¼
Z þ1

�1
f ðxÞw�

u;sðxÞdx ¼
Z þ1

�1
f ðxÞ 1ffiffi

s
p w� x� u

s

� �
dx ð1Þ

In (1), wðxÞ is a mother wavelet satisfying the following admissibility condition:

Z þ1

�1

jŵwðxÞj2

jxj dx < 1 ð2Þ

where ŵwðxÞ is the Fourier transform of wðxÞ. The existence of the integral in (2) requires that

ŵwð0Þ ¼ 0; i:e:;

Z þ1

�1
wðxÞdx ¼ 0 ð3Þ

The function wu;sðxÞ is dilated by the scaling parameter s and translated by the translation parameter u of
the mother wavelet wðxÞ.

An important property of the CWT is the ability to characterize the local regularity of functions. The
local regularity is often measured by the Lipschitz exponent. The Lipschitz exponent a may be defined as
the following.

A function f is said to be Lipschitz aP 0 at x ¼ v if there exists K > 0 and a polynomial pv of degree m
(m is the largest integer satisfying m6 a) such that

f ðxÞ ¼ pvðxÞ þ evðxÞ ð4Þ

jevðxÞj6Kjx� vja ð5Þ
For instance, a function is not differentiable at x ¼ v if 0 < a < 1. Therefore, the Lipschitz exponent a
characterizes the nature of singularity at x ¼ v.

When a structure has a flaw or defect, the vibration mode shape changes depending on the location and
type of damage. Small defects are difficult to identify, but they introduce some sorts of singularities to the
vibration mode shapes. These singularities may be characterized by the concept of the Lipschitz exponent
discussed briefly above. Therefore, we need an analysis tool to estimate the Lipschitz exponent from vi-
bration mode shapes of damaged structures; this is the objective of the present investigation. As an effective
estimator of the Lipschitz exponent, we will utilize the CWT.

In applying the wavelet transform for the Lipschitz exponent estimation, the notion of the vanishing
moment plays an important role. A wavelet wðxÞ is said to have n vanishing moments if it satisfies the
following conditions:Z þ1

�1
xkwðxÞdx ¼ 0 for 06 k < n ð6Þ

The condition (6) states that the wavelet having n vanishing moments is orthogonal to polynomials of up to
degree n� 1.

If the CWT with nP a is applied to the function of the form (4), the result becomes

Wf ðu; sÞ ¼ W evðu; sÞ ð7Þ
since Wpvðu; sÞ ¼ 0. Because of the vanishing moment property of the wavelet (with sufficiently large n such
that nP a), the CWT focuses only on a singular part of a function.
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Jaffard (1991) shows that if a square-integrable function f ðxÞ is Lipschitz a6 n at x ¼ v, then the
asymptotic behavior of the CWT Wf near x ¼ v becomes (see also Mallat (1998))

jWf ðu; sÞj6A0saþð1=2Þ 1
�

þ u� v
s

��� ���a� ðA0 > 0Þ ð8Þ

Near the cone of influence of x ¼ v, (8) reduces to

jWf ðu; sÞj6Asaþð1=2Þ ð9Þ

The high-amplitude wavelet coefficients are in the cone of the influence of the singularity. It is more
convenient to use the following form, equivalent to (9), in the estimation of the Lipschitz exponent:

log2 jWf ðu; sÞj6 log2 Aþ ða þ 1
2
Þ log2 s ð10Þ

In the actual application of (9), the locus of the local modulus maximum of the wavelet transform should be
determined. This will be illustrated later with numerical examples.

3. Wavelet selection for damaged beam analysis

The specific application of the CWT for the Lipschitz-exponent estimation will be made in a beam. A
beam is the simplest structural element, yet quite important one. A model beam is shown in Fig. 1 where the
beam has a defect represented by an abrupt thickness change. In this section, we derive the bound of the
Lipschitz exponent using the simplest Euler beam theory. Based on the estimated Lipschitz exponent, we
suggest an optimal wavelet for the estimation of the Lipschitz exponent in the present problem.

The rigorous analysis of the Lipschitz exponent may have to be carried out by the exact elasticity theory.
However, the experimental procedure to measure vibration modes may be more consistent with a beam
theory. This is because modal data are acquired only at a few discrete points on the top (or) bottom surface
of a beam. Therefore, the estimation of the singularity due to a small crack can be achieved quite satis-
factorily by the beam theory. In this work, we use the simplest Euler beam theory.

When the Euler beam theory is used, the field variables are displacement, rotation, moment and shear
force. If one denotes by x ¼ v the point of an abrupt thickness change in a beam, one can write the con-
tinuity condition across the discontinuity as

Fig. 1. A model for a damaged beam.
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Displacement: wðvþÞ ¼ wðv�Þ ð11aÞ

Rotation:
dwðvþÞ

dx
¼ dwðv�Þ

dx
ð11bÞ

Moment: EIðvþÞ d2wðvþÞ
dx2

¼ EIðv�Þ d2wðv�Þ
dx2

ð11cÞ

Shear force: EIðvþÞ d3wðvþÞ
dx3

¼ EIðv�Þ d3wðv�Þ
dx3

ð11dÞ

where the subscripts þ and � are used to denote the quantities just at the right and left of the discontinuous
point. For the case when an actual defect has a finite dimension, the same analysis can be applied to the
discontinuities at each end of the defect.

Since the bending rigidity EI is related to the beam thickness as in

EI ¼ E � ðwidthÞ � ðthicknessÞ3

12
ðE : Young0s modulusÞ

EI is discontinuous across the discontinuity, i.e.,

EIðvþÞ 6¼ EIðv�Þ ð12Þ

Using (11a)–(11d) and (12), one can conclude that only the lateral displacement wðxÞ and its first derivative
are continuous. Therefore, the Lipschitz exponent of the mode shapes of a damaged beam must lie between
1 and 2:

1 < a < 2 ð13Þ

Based on the finding (13), we conclude that to extract the Lipschitz exponent in the present beam
problem using the wavelet transform, the minimum number of the vanishing moments is n ¼ 2:

nP 2 ð14Þ

Regardless of the CWT or the discrete wavelet transform, the condition (14) must be fulfilled. Since
wavelets with more vanishing moments have longer support sizes, a tradeoff between vanishing moments
and support sizes should be considered. However, we adopt the wavelet with n ¼ 2 for the best localization
property.

Another important factor to consider in the wavelet selection is the continuity of the modulus maximum
of Wf ðu; sÞ. If a wavelet wðxÞ is the nth derivative of a Gaussian hðxÞ as in wðxÞ ¼ ð�1Þn ðdnhðxÞ=dxnÞ, the
modulus maximum of Wf ðu; sÞ belongs to a connected curve that is never interrupted for decreased scales
(Mallat, 1998). Furthermore, the corresponding wavelet has n vanishing moments. Based on these obser-
vations, we propose to employ the following wavelet for the present problems:

wðxÞ ¼ d2hðxÞ
dx2

ð15Þ

The wavelet in (15) is usually referred to as the Mexican hat wavelet and has the following explicit ex-
pression:

wðxÞ ¼ 2ffiffiffiffiffiffi
3r

p p�1=4 x2

r2

�
� 1

�
exp

�x2

2r2

� �
ð16Þ

The graph �wðtÞ for r ¼ 1 is shown in Fig. 2.
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4. Simulations for the Lipschitz exponents

Before applying the CWT to experimental mode shapes, it is very useful to perform numerical simu-
lations. The objective of this section is to study:

1. the relation between the damage extent and the Lipschitz exponent;
2. the comparison of the exponent estimation for mode shapes for different modal numbers;
3. the effect of the sampling distance on the exponent.

The simulation results for the effects of noise on the Lipschitz exponent will be presented in parallel with
experimental results in the next section.

For numerical simulations, the beam model in Fig. 1 is the target. A defect, or a flaw, in the beam is
realized by an abrupt thickness change because this configuration is easy for both numerical and experi-
mental studies. Numerical modal analysis is carried out by a commercial finite element program (ANSYS,
1993). The default width and thickness of the beam is h ¼ 20 mm, but the height c of the damaged part may
vary from 2 to 14 mm. Unless stated otherwise, the damage size w will be taken as w ¼ 0:5 mm. The beam
has free ends.

In using ANSYS, 2400 two-node plane beam elements (element size¼ 0.5 mm) are used. The number of
elements used for the present problem is more than sufficient to obtain converged results. The material data
used are: Young’s modulus E ¼ 70 GPa, density q ¼ 2700 kg/m3.

As the first case study, we consider a damaged beam with c ¼ 6 mm, i.e., c=h ¼ 0:3. The first bending
mode shapes of a damaged and undamaged beam are compared in Fig. 3(a). There is only a slight difference
between the two mode shapes as expected. Now we take the wavelet transform on the first mode shape of
the damaged beam using the Mexican hat wavelet in (16). The magnitude jWf ðu; sÞj is plotted in the scale-
translation plane. The horizontal axis represents the translation parameter u, which denotes the distance
from the origin of the x coordinate. Here, the mode shape is denoted by f ðxÞ.

The modulus maximum lying inside of the cone of influence is clearly seen in Fig. 3(b), and the appli-
cation of a ridge algorithm (Mallat, 1998) gives the result shown in Fig. 3(c). Observe that the limit of the
modulus maximum line approaches u 
 800 mm, where the damage (of size w ¼ 0:5 mm) is located as the
scale parameter s goes to 1. In the present simulation, the element size is intentionally chosen to be the same
as the damage size w. This selection is made because in most of actual experiments, a sampling distance

Fig. 2. The graph �wðxÞ with r ¼ 1.
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exceeds the damage size. If the element size is much smaller than the damage size, however, two modulus
maximum will appear. This is not pursued here to simulate actual experimental situations.

To estimate the Lipschitz exponent, the decay behavior along the modulus maximum line shown in Fig.
3(b) is plotted in Fig. 3(d). By applying the well-known linear regression technique, one can estimate the
Lipschitz exponent a as

a ¼ 1:31

This value indeed lies between the lower and upper bounds determined as in (13).
To investigate the relation between the damage extent and the Lipschitz exponent, we vary the damage

size from c=h ¼ 0:1 to 0.7. The damage location is fixed at a ¼ 800 mm. Repeating the same procedure used
in the first case study, the results shown in Fig. 4 are obtained. It is clear that the results of Fig. 4 are
consistent with the physical behavior: as the damage extent becomes severer (meaning that c=h becomes
smaller), the singularity gets worse (meaning that the Lipschitz exponent becomes smaller). This suggests a
possibility to correlate the damage extent to the Lipschitz exponent. However, it is remarked that noise in
measured signals, impossible to avoid in actual experimentation, lowers the values of the Lipschitz expo-
nent. This will be discussed in the next section in more details.

Fig. 3. Simulation for a damaged beam with c=h ¼ 0:3. The damage location is a ¼ 800 mm. (a) The first bending mode shape denoted

by f ðxÞ, (b) the contour plot of jWf ðu; sÞj, (c) the locus of the modulus maximum, (d) the decay behavior along the modulus maximum

line.
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We also address that the same amount of the damage extent at different locations may yield different
estimates of the Lipschitz exponent. To show this, we carry out the Lipschitz exponent analysis for varying
damage locations. Again, the fundamental bending mode is wavelet transformed. Table 1 shows the values
of the Lipschitz exponent for three different damage locations. The thickness of the damaged segment varies
from c=h ¼ 0:1 to 0.7 as before. Depending on the damage locations, slight changes in the exponent values
appear. This is because the curvature of the mode shape (of an undamaged beam) at different locations
affects the local singularity behavior as the analysis is carried out in a finite-dimensional space of ðu; sÞ.

The effects of the variation rate of the mode shape may be understood more clearly by comparing the
exponents estimated from higher mode shapes. To this end, we attempt to estimate the Lipschitz exponent
from the first three bending mode shapes. The damage location is a ¼ 800 mm, and the width is w ¼ 0:5
mm as before. For varying values of c=h, the values of the Lipschitz exponents are plotted in Fig. 5. The
higher the mode number is, the smaller the exponent value is. If a function is rapidly varying, but is not
sampled at sufficiently many locations, the sampled version of the function will look more singular. The
present result indeed reveals why the first mode shape is preferred for damage detection.

It is worth examining how sampling distances for modal testing affects the value of the Lipschitz ex-
ponent. The sampling distance is denoted by d in Fig. 1 and the sampling points are regarded as actual
sensing points. The model in consideration is exactly the same beam used in the first case (L ¼ 1200 mm,
a ¼ 800 mm, w ¼ 0:5 mm). Note that regardless of the sampling distance, the finite element analysis is
carried out with 2400 beam elements.

The values of the Lipschitz exponent are plotted in Fig. 6 for varying sampling distances. The singularity
estimation is strongly influenced by the sampling distance. If the number of sampling points decreases, i.e.,
the sampling distance increases, the value of the Lipschitz exponent increases. This means that the use of

Fig. 4. The estimates of the Lipschitz exponent for different values of c=h.

Table 1

The estimates of the Lipschitz exponent a for different damage locations at x ¼ a

a (mm) Estimates of a

c=h ¼ 0:1 0.2 0.3 0.4 0.5 0.6 0.7

600 1.04 1.17 1.38 1.50 1.70 1.78 1.83

800 1.04 1.14 1.31 1.50 1.69 1.80 1.91

1000 1.05 1.15 1.30 1.51 1.69 1.86 1.75
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insufficient sampling points loses information on the correct local singular behavior. In practical modal
testing where sampling resolution is not high, some care should be taken for the correct interpretation of
the meaning of the exponent values. However, Fig. 6 suggests that not only the presence but also the extent
of a defect can be diagnosed quite satisfactorily by the present method (observe that the analysis even with
w=d ¼ 1=11 characterizes the correct behavior).

5. Experiments for the Lipschitz exponent evaluation

To validate the present method, an experiment has been performed. The shape of the test beam is the
same as the one in Fig. 1, and the numerical data are L ¼ 1200 mm, h ¼ 20 mm, a ¼ 810 mm, w ¼ 30 mm,
c ¼ 10 mm (c=h ¼ 0:5). The sampling distance is d ¼ 30 mm, and thus data are acquired at 39 points.

Fig. 5. The estimates of the Lipschitz exponent for three different mode shapes.

Fig. 6. The effects of the sampling distances on the estimates of the Lipschitz exponent (w ¼ damage size, d ¼ sampling distance).
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Fig. 7(a) shows the first bending mode shape of the damaged beam, which is determined by modal
testing. Small circles in the figure represent the measurement points whereas the big circle indicates the
location of the damage. The experimental equipment consists of an accelerometer (B&K model-4375), a
preamplifier (B&K model-2626), an FFT analyzer (HP-35670A), and modal analysis software (IDEAS-
TDAS). To reduce noise, measured signals were averaged five times in the frequency domain.

The contour plot for the magnitude jWf ðu; sÞj of the experimental mode shape f ðxÞ is presented in Fig.
7(b). The thick line represents the modulus maximum line arriving at 8206 u6 830 mm, which corresponds
to a point near the center of the damaged part. As pointed out earlier, if a sufficiently large number of
measurement points was used, two modulus maximum lines would appear. In the present case with in-
sufficient measurement points, they merge together. However, the singularity nature does not disappear.

The decay behavior of jWf ðu; sÞj along the modulus maximum line shown in Fig. 7(b) is plotted in Fig.
7(c). Carrying out a linear regression analysis on the result shown in Fig. 7(c) give an estimate of the
Lipschitz exponent as

aexp ¼ 1:31 ð17Þ

Fig. 7. The wavelet and Lipschitz singularity analysis performed on the experimental mode shape of a damaged beam. (a) The first

mode shape f ðxÞ of a damaged beam at a ¼ 800 mm, (b) the contour plot of jWf ðu; sÞj with a modulus maximum emanating from near

u ¼ 825 mm, (c) the decay behavior along the modulus maximum line.
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To compare the experimental Lipschitz value with the numerical Lipschitz value, a finite element
analysis is performed for the test model. Though the finite element analysis was done with 2400 elements,
the mode shape is sampled only at the measurement points for realistic comparison. The numerical mode
shape and the corresponding decay behavior are shown in Fig. 8(a) and (b), respectively. The estimated
value of the exponent is

anum ¼ 1:51 ð18Þ
Comparing (17) and (18), one can see that the experimental estimation of the exponent predicts stronger
singularity (meaning that aexp < anum) than it actually is. This discrepancy may be due to noise introduced
in the measurement process.

To investigate the effect of noise on the estimated value of the Lipschitz exponent, we return to the
numerical mode shown in Fig. 8(a) and add some white noise. To this end, we consider the following model:

�ff ðxÞ ¼ f ðxÞ þ nðxÞ; nðxÞ � Nð0; r2
nÞ ð19Þ

Here, �ff ðxÞ is a contaminated signal of f ðxÞ by a Gaussian noise nðxÞ � Nð0; r2
nÞ where rn denotes the

standard deviation of a Gaussian noise.
Fig. 9(a) compares f ðxÞ and �ff ðxÞ with rn ¼ 0:04. These two functions are denoted by a ‘‘clean mode’’

and a ‘‘noisy mode’’, respectively where f ðxÞ represents the numerical mode shape plotted in Fig. 8(a). The
noisy numerical mode shape appears quite close to the experimental mode shape. The decay behavior for
�ff ðxÞ is also shown in Fig. 9(b). The estimated Lipschitz exponent is

anum ðwith rn ¼ 0:04 or ðN=SÞn ¼ 0:04Þ ¼ 1:41 ð20Þ

When the same analysis is repeated with rn ¼ 0:05, the following result is obtained.

anum ðwith rn ¼ 0:05 or ðN=SÞn ¼ 0:06Þ ¼ 1:25 ð21Þ

where the symbol ðN=SÞn is the noise-to-signal ratio defined as

ðN=SÞn ¼
�ff ðxÞ � f ðxÞ

��� ���
f ðxÞk k ð22Þ

If the added noise to the experimental mode shape is assumed to be a Gaussian noise, ðN=SÞn should be
somewhere between 0.04 and 0.06. (However, the estimation of ðN=SÞn is not the purpose of this work.) The

Fig. 8. Analysis of the simulated mode shape sampled exactly at the same points as the experimental sampling points. (a) The numerical

mode shape (sampling points marked by circles), (b) the decay behavior along the modulus maximum line.
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Fig. 9. Simulation for the contaminated signal with the noise level rn ¼ 0:04. (a) The comparison of the noisy and clean mode shapes,

(b) the decay behavior along the modulus maximum line.

Fig. 10. The discrete wavelet transform performed on the experimental mode shape of a damaged beam. (a) The first-level wave-

let coefficients by the Daubechies wavelets having one vanishing moment, (b) the first-level wavelet coefficients by the Daubechies

wavelets having two vanishing moments, (c) the first-level wavelet coefficients by the Daubechies wavelets having three vanishing

moments.
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point we want to address is that the noise added during the actual experimentation reduces the value of the
Lipschitz exponent because it makes the mode shape more singular. Therefore, the estimate of the Lipschitz
exponent using experimental data always gives a lower value than its true value.

At this point, it is worth applying the discrete wavelet transform to experimental mode shapes (Kim
et al., 2000). One advantage of the discrete wavelet transform over the CWT in damage detection is effi-
ciency. The discrete wavelet transform is performed by a fast algorithm that cascades discrete convolutions
with low and high pass filters and subsamples the output (Mallat, 1998).

The discrete wavelet transform has been applied to the experimental modal shape. Fig. 10(a)–(c) plot the
first-level wavelet coefficients by the Daubechies wavelets having (a) one, (b) two and (c) three vanishing
moments (Daubechies (1992) for the detailed accounts of the Daubechies wavelets). Earlier in Section 3, we
have shown that the minimum number of vanishing moments to detect the present damage is two. As
expected, the presence of the damage in a beam cannot be identified in Fig. 10(a) where the Daubechies
wavelet with one vanishing moment. However, wavelets with two or more vanishing moments are capable
of detecting the damage (note that the large amplitudes at both ends are due to the boundary distortion).

We make a few more remarks on the discrete wavelet transform. Even when the CWT experiences some
difficulties because of low measurement resolution, the discrete wavelet transform provides some useful
intuition on the existence of a defect. In this case, however, wavelets having more vanishing moments than
theoretically required may be needed to yield satisfactory results.

6. Conclusions

This investigation gives some theoretical foundations for the effectiveness of the wavelet transform
applied to mode shapes. The present discussion was given in terms of the wavelet capability to estimate the
Lipschitz singularity. The following is the summary of the findings in this investigation.

1. The CWT by the Mexican hat wavelet provides the necessary information to estimate the Lipschitz ex-
ponent.

2. A damage beam has the Lipschitz exponent lying between 1 and 2.
3. The first fundamental mode is more useful than higher modes in the exponent estimation.
4. The damage size is well correlated with the magnitude of the Lipschitz exponent.
5. Larger sampling distances give higher exponent values, that is, they lessen the apparent strength of sin-

gularity. However, the correlation between the damage extent and the exponent value is preserved even
for relatively large sampling distances.

6. Noise added to experimental data reduces the Lipschitz exponent value; noise increases the strength of
the singularity.

7. The minimum number of the vanishing moment in the application of the discrete wavelet transform can
be predicted by the Lipschitz exponent for the damaged beam.
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